325 research outputs found

    Glioblastoma Multiforme

    Get PDF

    DevOps for network function virtualisation: an architectural approach

    Get PDF
    The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of different service providers, and introduces a specialised Development and Operations model for supporting developers

    Diagnosing growth in low-grade gliomas with and without longitudinal volume measurements: A retrospective observational study.

    Get PDF
    BACKGROUND: Low-grade gliomas cause significant neurological morbidity by brain invasion. There is no universally accepted objective technique available for detection of enlargement of low-grade gliomas in the clinical setting; subjective evaluation by clinicians using visual comparison of longitudinal radiological studies is the gold standard. The aim of this study is to determine whether a computer-assisted diagnosis (CAD) method helps physicians detect earlier growth of low-grade gliomas. METHODS AND FINDINGS: We reviewed 165 patients diagnosed with grade 2 gliomas, seen at the University of Alabama at Birmingham clinics from 1 July 2017 to 14 May 2018. MRI scans were collected during the spring and summer of 2018. Fifty-six gliomas met the inclusion criteria, including 19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas in 30 males and 26 females with a mean age of 48 years and a range of follow-up of 150.2 months (difference between highest and lowest values). None received radiation therapy. We also studied 7 patients with an imaging abnormality without pathological diagnosis, who were clinically stable at the time of retrospective review (14 May 2018). This study compared growth detection by 7 physicians aided by the CAD method with retrospective clinical reports. The tumors of 63 patients (56 + 7) in 627 MRI scans were digitized, including 34 grade 2 gliomas with radiological progression and 22 radiologically stable grade 2 gliomas. The CAD method consisted of tumor segmentation, computing volumes, and pointing to growth by the online abrupt change-of-point method, which considers only past measurements. Independent scientists have evaluated the segmentation method. In 29 of the 34 patients with progression, the median time to growth detection was only 14 months for CAD compared to 44 months for current standard of care radiological evaluation (p \u3c 0.001). Using CAD, accurate detection of tumor enlargement was possible with a median of only 57% change in the tumor volume as compared to a median of 174% change of volume necessary to diagnose tumor growth using standard of care clinical methods (p \u3c 0.001). In the radiologically stable group, CAD facilitated growth detection in 13 out of 22 patients. CAD did not detect growth in the imaging abnormality group. The main limitation of this study was its retrospective design; nevertheless, the results depict the current state of a gold standard in clinical practice that allowed a significant increase in tumor volumes from baseline before detection. Such large increases in tumor volume would not be permitted in a prospective design. The number of glioma patients (n = 56) is a limitation; however, it is equivalent to the number of patients in phase II clinical trials. CONCLUSIONS: The current practice of visual comparison of longitudinal MRI scans is associated with significant delays in detecting growth of low-grade gliomas. Our findings support the idea that physicians aided by CAD detect growth at significantly smaller volumes than physicians using visual comparison alone. This study does not answer the questions whether to treat or not and which treatment modality is optimal. Nonetheless, early growth detection sets the stage for future clinical studies that address these questions and whether early therapeutic interventions prolong survival and improve quality of life

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of Sulfasalazine for the treatment of progressing malignant gliomas in adults

    Get PDF
    BACKGROUND: Sulfasalazine, a NF-kappaB and x(c)-cystine/glutamate antiport inhibitor, has demonstrated a strong antitumoral potential in preclinical models of malignant gliomas. As it presents an excellent safety profile, we initiated a phase 1/2 clinical study of this anti-inflammatory drug for the treatment of recurrent WHO grade 3 and 4 astrocytic gliomas in adults. METHODS: 10 patients with advanced recurrent anaplastic astrocytoma (n = 2) or glioblastoma (n = 8) aged 32-62 years were recruited prior to the planned interim analysis of the study. Subjects were randomly assigned to daily doses of 1.5, 3, 4.5, or 6 grams of oral sulfasalazine, and treated until clinical or radiological evidence of disease progression or the development of serious or unbearable side effects. Primary endpoints were the evaluation of toxicities according to the CTCAE v.3.0, and the observation of radiological tumor responses based on MacDonald criteria. RESULTS: No clinical response was observed. One tumor remained stable for 2 months with sulfasalazine treatment, at the lowest daily dose of the drug. The median progression-free survival was 32 days. Side effects were common, as all patients developed grade 1-3 adverse events (mean: 7.2/patient), four patients developed grade 4 toxicity. Two patients died while on treatment or shortly after its discontinuation. CONCLUSION: Although the proper influence of sulfasalazine treatment on patient outcome was difficult to ascertain in these debilitated patients with a large tumor burden (median KPS = 50), ISRCTN45828668 was terminated after its interim analysis. This study urges to exert cautiousness in future trials of Sulfasalazine for the treatment of malignant gliomas. TRIAL REGISTRATION: Current Controlled Trials ISRCTN45828668

    Impact of whole genome amplification on analysis of copy number variants

    Get PDF
    Large-scale copy number variants (CNVs) have recently been recognized to play a role in human genome variation and disease. Approaches for analysis of CNVs in small samples such as microdissected tissues can be confounded by limited amounts of material. To facilitate analyses of such samples, whole genome amplification (WGA) techniques were developed. In this study, we explored the impact of Phi29 multiple-strand displacement amplification on detection of CNVs using oligonucleotide arrays. We extracted DNA from fresh frozen lymph node samples and used this for amplification and analysis on the Affymetrix Mapping 500k SNP array platform. We demonstrated that the WGA procedure introduces hundreds of potentially confounding CNV artifacts that can obscure detection of bona fide variants. Our analysis indicates that many artifacts are reproducible, and may correlate with proximity to chromosome ends and GC content. Pair-wise comparison of amplified products considerably reduced the number of apparent artifacts and partially restored the ability to detect real CNVs. Our results suggest WGA material may be appropriate for copy number analysis when amplified samples are compared to similarly amplified samples and that only the CNVs with the greatest significance values detected by such comparisons are likely to be representative of the unamplified samples

    Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the canonical variates, and we applied ridge penalization to the regression of pathway genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-pathway genes on the canonical variates of the pathway genes.</p> <p>Results</p> <p>We performed a small simulation to illustrate the model's capability to identify new candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more than 25 genes that correlated > 0.9 with canonical variates of the pathway genes.</p> <p>Conclusion</p> <p>We concluded that penalized canonical correlation analysis is a powerful tool to identify candidate genes in pathway analysis.</p

    Evaluation of the proliferation markers Ki-67/MIB-1, mitosin, survivin, pHH3, and DNA topoisomerase IIα in human anaplastic astrocytomas - an immunohistochemical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histological malignancy grading of astrocytomas can be challenging despite criteria given by the World Health Organisation (WHO). Grading is fundamental for optimal prognostication and treatment, and additional biomarkers are needed to support the histopathological diagnosis. Estimation of proliferative activity has gained much enthusiasm, and the present study was designed to evaluate and compare novel immunohistochemical proliferative markers in human anaplastic astrocytomas.</p> <p>Methods</p> <p>Proliferative activity was determined in twenty-seven cases with antibodies reactive against the Ki-67 antigen, mitosin, survivin, pHH3, and DNA topoisomerase IIα, and they were mutually compared as well as related to mitotic activity.</p> <p>Results</p> <p>The markers correlated well with each other, but poorly with mitoses, probably because of small and squeezed tumour samples, in which identification of mitoses can be difficult. Positive association to overall survival was observed as well.</p> <p>Conclusions</p> <p>Our data show that these markers may assist significantly in the evaluation of proliferative activity in anaplastic astrocytomas and even have prognostic value.</p

    EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines

    Get PDF
    Purpose: The epidermal growth factor receptor (EGFR) is amplified and overexpressed in adult glioblastoma, with response to targeted inhibition dependent on the underlying biology of the disease. EGFR has thus far been considered to play a less important role in pediatric glioma, although extensive data are lacking. We have sought to clarify the role of EGFR in pediatric high-grade glioma (HGG). Experimental Design: We retrospectively studied a total of 90 archival pediatric HGG specimens for EGFR protein overexpression, gene amplification, and mutation and assessed the in vitro sensitivity of pediatric glioma cell line models to the small-molecule EGFR inhibitor erlotinib. Results: Amplification was detected in 11% of cases, with corresponding overexpression of the receptor. No kinase or extracellular domain mutations were observed; however, 6 of 35 (17%) cases harbored the EGFRvIII deletion, including two anaplastic oligodendrogliomas and a gliosarcoma overexpressing EGFRvIII in the absence of gene amplification and coexpressing platelet-derived growth factor receptor α. Pediatric glioblastoma cells transduced with wild-type or deletion mutant EGFRvIII were not rendered more sensitive to erlotinib despite expressing wild-type PTEN. Phosphorylated receptor tyrosine kinase profiling showed a specific activation of platelet-derived growth factor receptor α/β in EGFRvIII-transduced pediatric glioblastoma cells, and targeted coinhibition with erlotinib and imatinib leads to enhanced efficacy in this model. Conclusions: These data identify an elevated frequency of EGFR gene amplification and EGFRvIII mutation in pediatric HGG than previously recognized and show the likely necessity of targeting multiple genetic alterations in the tumors of these children.Cancer Research UK grants C1178/A10294, C309/A2187, and C309/A8274; Oak Foundation (L. Marshall); La Fondation de France (N. Gaspar); and Breakthrough Breast Cancer (J.S. Reis-Filho). We acknowledge NHS funding to the National Institute for Health Research Biomedical Research Centre

    Dynamics of chemosensitivity and chromosomal instability in recurrent glioblastoma

    Get PDF
    Glioblastoma multiforme is characterised by invasive growth and frequent recurrence. Here, we have analysed chromosomal changes in comparison to tumour cell aggressiveness and chemosensitivity of three cell lines established from a primary tumour and consecutive recurrences (BTL1 to BTL3) of a long-term surviving glioblastoma patient together with paraffin-embedded materials of five further cases with recurrent disease. Following surgery, the BTL patient progressed under irradiation/ lomustine but responded to temozolomide after re-operation to temozolomide. The primary tumour -derived BTL1 cells showed chromosomal imbalances typical of highly aggressive glioblastomas. Interestingly, BTL2 cells established from the first recurrence developed under therapy showed signs of enhanced chromosomal instability. In contrast, BTL3 cells from the second recurrence resembled a less aggressive subclone of the primary tumour. Although BTL2 cells exhibited a highly aggressive phenotype, BTL3 cells were characterised by reduced proliferative and migratory potential. Despite persistent methylation of the O6-methylguanine-DNA methyltransferase promoter, BTL3 cells exhibited the highest temozolomide sensitivity. A comparable situation was found in two out of five glioblastoma patients, both characterised by enhanced survival time, who also relapsed after surgery/chemotherapy with less aggressive recurrences. Taken together, our data suggest that pretreated glioblastoma patients may relapse with highly chemosensitive tumours confirming the feasibility of temozolomide treatment even in case of repeated recurrence
    corecore